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Although the original vision for artificial intelligence was the simulation of (implicitly 
human) intelligence, research has gradually shifted to autonomous systems that compete 
with people. The resultant popular attitude toward artificial intelligence, we argue here, is 
by turns disdain, grudging acceptance, and fear. That attitude not only limits our work’s 
potential, but also imperils its support. This paper proposes a constructive alternative: the 
development of collaborative intelligence. As envisioned here, a collaborative intelligence 
does not require encyclopedic command and need not be limited to a single problem. 
The necessary components of a collaborative intelligence are nearly at hand, and the key 
issues readily identified. As a first step, this paper proposes three challenging but accessible 
problems that would both change the public perception of artificial intelligence and spur 
substantive research to advance our science.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This is a position paper, intended both to challenge and to inspire research in artificial intelligence (AI). It considers the 
path AI research has taken, and seeks to broaden its long-term goals. The vision offered here integrates what AI has learned 
in a way that would advance our science and support people.

This section restates the core ideas that began AI, describes how we as researchers now see our field, considers the cur-
rent media portrayal of AI, and notes how our research targets shift. In response, Section 2 proposes collaboration between 
a person and a machine, and highlights some crucial differences between human and computer collaborators. An extended 
example of collaborative intelligence in Section 3 identifies key issues inherent in the development of a collaborative in-
telligence. Section 4 presents three reasonably approachable, exciting problems that would both engage AI researchers and 
benefit human users.

1.1. How AI was first envisioned

In August 1955, in what has come to be known as the Dartmouth manifesto, Claude Shannon, Marvin Minsky, Nathaniel 
Rochester, and John McCarthy proposed AI as the theme for a conference to be held the following year.1 Their targets 
for this new field included precursors of what AI would now term problem solving, natural language processing, artificial 
neural networks, complexity theory, machine learning, and perception. Their premise was that “every aspect of learning or 
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any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.” 
There is no indication in that document that computers were to work together with people; the intent was to develop an 
autonomous intelligence.

At the time, Alan Newell and Herbert Simon had already begun work on the Logic Theorist, a program to prove math-
ematical theorems. Although it could prove 38 of the first 52 theorems in Principia Mathematica (a key contribution to the 
foundations of mathematics [31]), the Logic Theorist was of little interest at the Dartmouth conference [7]. Few scholars 
then considered computer-constructed proofs of elementary theorems a dramatic achievement. Nonetheless, Newell and 
Simon, along with J.C. Shaw, continued their work. They were quite clear about the Logic Theorist’s need for knowledge, 
both about the problem domain and the mechanisms necessary to guide its search. This led to the General Problem Solver 
(GPS) [20]. GPS tackled problem solving from two perspectives: machine-achievable processes and behavior observed in hu-
mans. True to the Dartmouth vision of simulation, college sophomores were asked to think aloud as they solved symbolic 
logic problems, and GPS was developed to simulate what Newell and Simon observed.

In many ways, in 1958 GPS set the agenda for AI research. It established some of AI’s basic building blocks: goals, 
objects characterized by feature values, and operators as functions on objects. GPS explicitly recognized the importance of 
feature identification, problem-dependent heuristics, efficient data structures and algorithms, performance evaluation, and 
the potential for exponential search spaces. In response, it advocated problem-independent heuristics, including means-ends 
analysis and planning; a model of problem solving as a sequence of actions; and the careful separation of process from data 
(i.e., isolation of what was being thought about from how it was being thought about). We consider next how AI has 
addressed that agenda.

1.2. AI’s trajectory

The path AI research has taken can be readily traced from the first AI conference at Dartmouth through two of the 
major meetings that followed it. The Dartmouth manifesto postulated general goals: to discover “how to make machines 
use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.” 
There was no mention of interaction with or impact on people, and no targets beyond the things that people can do.

Fourteen years later, the papers presented at the first IJCAI in 1969 reflect the topics AI researchers chose to pursue. 
The WordleTM in Fig. 1(a) for the titles of those papers indicates a strong focus on implementation (e.g., the tokens “sys-
tem,” “program,” “memori,” “method,” “process,” “language,” “robot,” “structure,” and “control”) and theory (e.g., “model,” 
“theorem,” “base”). There is also a significant interest in “pattern,” a precursor to learning.

Contemporary AI is described by a second Wordle, in Fig. 1(b), this time for the titles of papers presented at the 23rd 
IJCAI, in 2013. “Learn” and “model” now clearly dominate, with techniques (e.g., “plan,” “gener,” “search,” “constraint,” 
“logic,” and “network”) as important concerns, along with “game,” “social,” and “data.” This is how we, as researchers, now 
describe our field to one another. Several subfields, most notably vision and robotics, have by 2013 detached themselves, 
but a focus on language and structure persists. Although “human” appears in both Wordles, it is not prominent in either of 
them.

The dramatic changes between 1969 (in Fig. 1(a)) and 2013 (Fig. 1(b)) were driven, I believe, by our collective fascination 
with hard problems. To solve those problems, AI researchers developed a diverse set of representations to model the real 
world for computers. These include logics, ontologies, semantic nets, and rich graph structures. Then, to harness these 
representations, AI researchers built inference mechanisms and search algorithms intended to manipulate that knowledge. 
Empirical work rigorously validates the efficiency and effectiveness of these products.

The combined push to compare and compete has honed performance and driven research. The need for uniform scientific 
evaluation of empirical work has led to ambitious, shared datasets, including repositories for machine learning, planning, 
and image labeling. Competition, along with common and exacting evaluation metrics, allows us to see which methods 
perform best on which data. The earliest instance of this appears to have been the push to prove all the theorems in 
Principia Mathematica, a feat ultimately accomplished independently by both Gilmore and Wang [9,30]. Since then, prize 
money and targeted research funding have engendered enthusiastic competitions in such areas as speech recognition, game 
playing, and self-driving cars, where work might have otherwise developed far more slowly.

As a result, AI’s standard for success has become the ability of one system, algorithm, architecture, representation, or 
approach to outperform another. Clearly, we are in search of the best machine intelligence we can construct, without any 
regard to what people can do. Meanwhile, this clever problem solving has had some unanticipated results.

1.3. AI in the mainstream media

AI’s description in the popular press has done little to enhance its reputation. The media has alternately overpraised AI 
for techniques that are not new, and over-criticized it for overly optimistic promises.2 As LeCun notes, “AI ‘died’ about four 

2 Compare, for example, http://www.dailygalaxy.com/my_weblog/2010/01/artificial-intelligence-will-leapfrog-humans-by-2020-says-scifi-great-a-weekend
-feature.html with http :/ /www.skeptic .com /reading _room /artificial-intelligence-gone-awry/, January 7, 2015.
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Fig. 1. Wordles for the titles of papers presented at IJCAI in (a) 1969 and (b) 2013. Each title was treated as a single sentence, stop words were removed, 
and Porter’s stemming algorithm was used to tokenize the remaining words. 354 tokens were used for (a), and 2979 for (b).

times in five decades because of hype: people made wild claims (often to impress potential investors or funding agencies) 
and could not deliver.”3 Today the depiction of AI in the popular media is a mixture of flawed entertainment and fear [15].

The perception that AI builds flashy but failure-ridden devices has been fueled by the proliferation of commercial appli-
cations. Smartphones, owned by more than 20% of the world’s population [11], have popularized some apps with arguable 
claims to AI content (e.g., Apple’s Siri). Marketers now label many devices as AI-controlled, from thermostats to toy “robot 
cars.” If any of their features fails or disappoints a user, it is AI that takes the blame in the media. For example, an NBC 
review of one toy car noted that “The AI can also get easily confused” [13].

The second, equally concerning popular perception is that AI is to be feared. Among the top three “in-depth” articles re-
turned on a simple recent web search for “artificial intelligence” was “Welcome, Robot Overlords. Please Don’t Fire Us? Smart 
machines probably won’t kill us all — but they’ll definitely take our jobs, and sooner than you think” [8]. Fear-mongering 

3 https :/ /plus .google .com /+YannLeCunPhD /posts /Qwj9EEkUJXY, May 1, 2014.
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“reports” abound, including “Soldiers, Machines, and the Rise of Battlefield Robotics” [5] and “The rise of robot journalists 
and the world brain: beware of the media industrial complex” [17]. Even highly respected sources trumpet the dangers in 
their headlines: “Don’t be evil, genius” [2] and “Prof . . . predicts next 25 years will bring instant language translation — and 
a rise in ‘lifelogging’ and cyberwar too” [3].

As a discipline, we have a public opinion problem. For example, a recent British survey provides evidence that AI has 
begun to frighten and worry the general populace.4 Among respondents, 39% worried that “there will be a time when 
robots present a danger to humans,” and “29% believed that machines will pose a danger to the human race.” Particular 
fears cited include the use of drones and the undermining of “traditional ways of life.” Meanwhile, a recent United States 
survey reported that people were both optimistic about the quality of their lives in a robot-rich future and concerned about 
their ability to find employment there [18].

In summary, although AI’s founders did not envision world domination by a supreme cybernetic brain, nor seek to 
sell small electronic devices, there is now a general perception that AI is, by turns menacing, device-centric, flakey, or a 
finished parlor trick. It is necessary to respond to this unflattering and inaccurate portrayal, and AI researchers have begun 
to do so. The 1st International AAAI Workshop on AI and Ethics will be held at AAAI-15. Its call for papers acknowledged 
both the media torrent and the possibility that it is correct. The workshop’s call solicited papers that address “the ethical 
questions implicit in such headlines which go to the centre of the quest to build AI systems with potentially super-human 
intelligence.”5

1.4. Shifting targets for AI research

AI research has focused heavily on the targets posed in 1955, and continues to refine those targets when the resul-
tant artifacts do not quite reach the anticipated skill level. We highlight several noteworthy areas here: natural language 
processing (NLP), the data-driven paradigm, commonsense reasoning, and robotics. Each addresses a shifting target.

The 1955 target “how to make machines use language” was recast by Turing as a program that, when engaged in 
conversation, could not be distinguished from a person [28]. Recent proclamations that we had reached a “milestone in 
computing history” because a chatterbot won the Loebner prize [23] have further perpetuated the notion that a computer 
able to fool people is artificially intelligent. In a 5-minute conversation, a program convinced 30% of its 30 human judges 
that it was Eugene, a 13-year old Ukrainian boy. The judges excused its poor syntax because English was not its native 
language, and attributed its cavalier replies to its age. What this program primarily proved, I would argue, is that fooling 
people is not a sufficient claim to intelligence [21]. NLP research is now considerably more ambitious; it includes, for 
example, understanding, summarization, and translation.

AI researchers soon recognized that to solve the “kinds of problems now reserved for humans” would require a substan-
tive knowledge base and a host of ways to use it [16]. As engineers produced computers that could store vast quantities of 
data and process it quickly, the data-driven paradigm arose: what intelligence requires is enough facts. For some purposes, 
that approach is surprisingly successful (e.g., web search, self-driving cars). The development of such a knowledge base 
has motivated massive AI efforts from CYC [22] to Watson [26], as well as recent funding initiatives. Too often, however, 
statistical correlation fails to connect information in meaningful ways. Artifacts like the Jeopardy-playing Watson remind us 
what remains beyond the reach of a program with a great deal of knowledge but not enough incisive procedures to apply 
it. For example, Watson carefully followed its statistical algorithm to proffer Toronto as a city in the United States.

Commonsense reasoning provides meaning and context to data. Although this target for AI is worthwhile, it is also con-
siderably more difficult. (Indeed, financial gurus were recently reassured that robots will never take everyone’s jobs because 
so much of our daily work requires commonsense [4].) At the very least, a commonsense reasoner should correctly an-
swer simple questions that require knowledge about properties of ordinary objects. For example, neither Watson nor a web 
search would be able to answer the question “Can a crocodile run a steeplechase?” [14]. That gap drives the development 
of COPA, a question bank that will force intelligence-claiming artifacts to answer a broad range of questions about plausible 
alternatives [24]. Associative techniques based on text corpora do little better than random on the COPA questions [24].

Although robots were not mentioned in the Dartmouth manifesto, as computing machines they quickly attracted re-
searchers’ attention. Although “robot” is relatively prominent in the 1969 Wordle, it did not appear in the title of any paper 
at AAAI-2013. Today’s commercially deployed robots are engineered primarily for environments where their programs can 
follow rules, be tele-operated, or rely on fixed structure (e.g., self-driving cars with maps, warehouses with rigid layouts 
and restricted areas in which to safeguard humans) [1]. Nonetheless, many of the tasks we would like to allocate to robots 
(e.g., household chores, elder care) would place them in complex, cluttered environments that include a broad variety of 
objects, people, and perhaps other robots. This requires commonsense knowledge and reasoning, as well as the ability to 
contend with uncertainty produced by noise in the robots’ sensors and actuators. The focus on robotics at AAAI-15 seeks to 
reintroduce AI and robotics to address such tasks.

In summary, people have skills that AI research has not yet reproduced in machines. Moreover, there are many tasks we 
would like to allocate to, or at least share with, computers. This is the impetus for collaborative intelligence.

4 http://corporate.uktv.co.uk/news/article/humans-fear-rise-machines/, July 14, 2014.
5 http://www.aaai.org/Workshops/ws15workshops.php#ws01, October 17, 2014.
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2. Collaborative intelligence

Historically, people have built machines because they wanted help. If people are to trust an artificial intelligence, we will 
want to know not only what is true but also why, that is, what is the source of the machine’s premises and the pattern of 
its reasoning. Facts should have provenance (e.g., as in Start [12]) and rationales should be transparent to human users.

As envisioned here, a collaborative intelligence (C I) partners with a person to achieve the person’s goals. The assumption 
is that some subtasks are more reasonably delegated to the person, and others to the computer. A C I is intended not to 
substitute for a human employee, but to engage in a task with one. For example, on request, a CoBot (a mobile robot) 
will deliver an item to another floor in its building, but it asks a person to call the elevator and press the button for the 
correct floor [6]. Moreover, if no person is available, the CoBot signals that it needs help. Inherent here is that people 
and computers have complementary skills. A robot vacuum cleaner, for example, may collect small dirt particles from the 
floor more efficiently than a person armed with cleaning tools, but the person knows under what circumstances that robot 
should be deployed (e.g., not in water or large debris). A robot vacuum cleaner that identified situations where its human 
user could be of help (e.g., to empty its collection bag or remove a playful pet) and then requested that help would be the 
basis of an interesting C I. Although interfaces developed in work on human–computer interaction are necessary, a C I is by 
definition more concerned with an appropriate and supportive division of labor.

To collaborate effectively with a person, a C I must be able to model the human view of the world. This is an area 
that cognitive science addresses, but one rarely considered in AI. (Notable exceptions here are the work in commonsense 
reasoning and qualitative reasoning.) For example, in a classic psychology experiment, people regularly reported that Cuba 
was similar to Russia, but Russia was not similar to Cuba [29]. Nonetheless, most AI research treats object similarity as a 
symmetric relation. At the very least, a C I should be aware of such human perceptions, particularly when they differ from 
those of the machine.

A C I must engage in dialogue with its human partner. As an ongoing example, consider a kitchen C I that is asked, 
“How do you make soup?” A C I with extensive knowledge must filter its possible responses, because its help will only be 
valued if it is neither too simplistic (e.g., “Just open a can and heat the contents.”) nor too detailed (e.g., “. . . the history 
of soup is probably as old as the history of cooking. . . ”6). Appropriate answers are attuned to the user’s demographics and 
current circumstances. A suggested recipe, for example, would more likely be accepted if it considered the person’s time 
frame, budget, taste profile, and environment. A recipe for a cold soup, for example, is likely to be better received in the 
summer. A C I should also be able to explain its answers to its human collaborator. For example, if the user questions the 
incorporation of somewhat limp vegetables, our kitchen C I could explain that they add flavor and can later be puréed to 
thicken the soup before serving. A C I that provides periodic procedural advice or additional information as a task progresses 
is particularly useful in response to change. For example, midway in cooking, an ingredient may be found to be unusable or 
exhausted, so that the recipe requires adjustment.

Productive dialogue requires not only a shared vocabulary but also a shared context in which to construct good answers. 
A C I should elicit that context by asking questions. Many human endeavors have multiple goal criteria and require multiple 
decisions, each of which impacts several goals. A C I that elicits its user’s goals can ask how they should be prioritized, so 
that it can model both the user’s knowledge and the user’s expectations. Our kitchen C I, for example, could ask whether 
the soup ingredients are to be purchased or limited to those on hand. Some important questions address ambiguity or 
motivation. It is far easier to disambiguate with a question, such as “Did you want me to prepare a soup or would you 
just like a recipe?” Questions about the authority and significance of knowledge sources also help a C I filter information to 
reduce it to a manageable quantity: “Do you prefer the approach of a particular chef?” Questions can help a C I contend with 
misunderstandings and unanticipated occurrences. Questions also relieve the C I of an obligation to understand perfectly.

Dialogue also permits the C I to signal its internal state to the user in several ways. Questions indicate that the C I has too 
many or too few options, and therefore needs guidance. A good collaborator monitors its own declarative knowledge (“I am 
unfamiliar with ‘thickening”’), procedural skill (“I’ve rarely made stock before”), and progress on the task (“This appears to 
be taking longer than I expected”). Such self-awareness permits the C I to evaluate its current strategy and even to change 
it: “The soup is still not very thick. Should we add some cream or some cooked rice?” This kind of transparency also gives 
the C I the opportunity to learn from its users. Nonetheless, the construction of a C I must contend with the fundamental 
differences in the way that any machine and any person function.

A C I must recognize that its human collaborator is very different from a machine, so that the C I can interpret what it 
experiences and how it should communicate. Assuredly, people perform some calculations more slowly and remember facts 
less quickly and accurately. Nonetheless, people are embodied in a complex and dynamic environment from which they 
continually receive vast quantities of perceptual data. People are engineered to exploit multiple sensory modalities (hearing, 
vision, smell, touch, proprioception), and they seamlessly integrate that input with prior knowledge. In contrast, a computer 
must rely on artificial sensory devices (e.g., cameras, lidar, infrared, sonar, and wireless) whose percepts are fundamentally 
different and require deliberate integration with the computer’s knowledge store.

People use percepts from a single modality in more than one way at the same time. For example, when a person looks 
at a visual stimulus, the rods and cones in her eyes do not send a pixelated snapshot of what she sees to her brain. Rather, 

6 A search on “soup” found this quickly at http :/ /www.foodtimeline .org /foodsoups .html, May 1, 2014.
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H: Hey, Joe. (1)
CI: Good morning. How can I help? (2)
H: When can I have lunch with Alice next week? (3)

CI: Tuesday or Friday would work. (4)
H: Just a minute. (Pause while H speaks to Alice.) Okay, Tuesday at 1. (5)

CI: That would give you an hour. You have a meeting uptown at 2. (6)
H: Right. (Another pause while H speaks to Alice.) 12:30 then. (7)

CI: Would you like me to make a reservation? (8)
H: Sure. Some place around here. (9)

CI: Last time you and Ms. Sentara went to Jimmy’s, but Jimmy’s is closed on Tuesdays. (10)
H: Pepe’s then. (11)

CI: I have confirmed with her CI and reserved a table. Done. (12)

Fig. 2. A sample dialogue between a human H and a collaborative intelligence CI.

they transmit a pattern of neural impulses that describe the location of the stimulus and such properties as its luminance, 
color, shape, and motion. Once past her primary visual cortex, that data continues to be transformed and streamed by two 
distinct pathways [10]. In the parietal region, which also has a map of the person’s body and its position in space, what she 
has just seen controls her movements while, at the same time, her temporal lobe constructs the objects and people she has 
seen. Thus, vision is an intrinsic part not only of recognizing what we see but also of deciding what can be done with it 
and how to do so, and these processes occur in parallel.

People also clearly apply their perceptions for multiple purposes. People use sound to communicate, to alert, and to 
convey emotion, all of which other people detect by hearing. People use vision to identify objects, situations, and appropriate 
responses, and to detect emotion in other people. By comparison, camera-equipped computers, even when supported by 
other kinds of sensors, are severely impoverished.

Furthermore, within their (ordinary) perceptual flood, people routinely focus their own attention and that of others. For 
example, master Go players, despite hundreds of possible moves, look only at the three or four that are most promising, 
and detect those few in a fraction of a second [25]. In addition, human gestures are fast, expressive, and cogent. Pointing, 
for example, is a way to focus the attention of another agent on an object or situation of interest. In contrast, the inability 
of a program confronted by large quantities of data to focus its attention appropriately is a well-known concern in AI. 
Finally, people engage with multiple agents, reference multiple data sources, and address multiple goals. To do so, they 
often employ multiple reasoning methods and multiple heuristics.

In summary, there are dramatic differences between our proposed pair of collaborators: a person and a machine. They 
perceive the world differently, they compute differently, and they communicate differently. If a computer is to collaborate 
with a person, there are a number of key issues to address, described next.

3. An extended example of a C I

As envisioned here, a C I is not a general intelligence. Each C I would target problem areas in which it could assist 
people, and provide representations and procedures to support particular human activities. Many of the key issues for a C 
I, however, have already received preliminary research attention. We take now as a running example, the sample dialogue 
with an appointment secretary in Fig. 2. Line 1 is an alert to the system by the human H; line 2 is a response from the 
collaborative intelligence C I.

First, a C I needs a clear statement of the shared task. There are two ways this might proceed: either the person poses the 
problem in some formal language that is transparent to the computer, or the computer queries the person for a description 
that it can manipulate. Since assistance is our motivation here, the communicative burden is more appropriately placed on 
the machine. Given an ontology of tasks and their components, the computer would assume that any new conversation is 
a request for help, and seek to elicit from the person some clarification of the task at hand, including the person’s goals 
and relevant constraints. Line 3 could be parsed as a reference to a known task with clear goals and constraints, taken from 
their shared ontology.

Once the task is well defined, the C I needs to assemble the necessary facts. Its knowledge base would provide an 
appointment calendar. Its scheduling algorithm would ensure that appointments do not overlap, allow for travel time and 
typical duration, and possibly consider similar previous or future appointments. These are reflected in lines 4 and 6.

The selection of relevant facts is to some extent task-dependent. Enough time to travel to a destination (the restaurant 
and then the meeting) and enough time to complete a task (here, eating) are fundamentals whose range of values should 
be part of a commonsense knowledge base. Note that, in line 10, C I checked to see if the restaurant it considered most 
probable was open on Tuesday before it offered it to H. This is an example of a proactive C I, whose queries to its knowledge 
sources are aware of the context in which they are made.

A C I should also tailor itself to the needs of the person it serves. For example, in line 10, the C I might have checked 
where H often eats instead of where H has eaten with Alice, or whether H is already scheduled to eat at Jimmy’s soon 
before or soon after lunch on Tuesday. When it perceives an ambiguity, or early in its experience with a particular person, 
a C I should ask more questions, such as “Do you mean Alice Sentara?” or “Do you want to eat there two days in a row?” 
As it learns the person’s preferences, the C I should eventually ask fewer questions. The learning envisioned here is not 
complex — probability distributions over the person’s history would likely suffice. For example, a commonsense knowledge 
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base may know “lunch is an activity that occurs in an eating place for between 3 and 180 minutes between 11 AM and 
3 PM.” More specific ranges of values and Alice’s full name are easy to learn; restaurant features preferred by a particular 
person could be represented with a confidence level or a probability distribution, so that the C I can offer alternatives when 
appropriate. The degree to which the C I is decisive (e.g., when to suggest alternatives) is also learnable. Good collaborators 
do not dictate.

Periodically, a C I should consolidate and consider its own knowledge store. It should analyze its collaboration history 
offline (i.e., when not engaged in a task) to detect flaws, gaps, or speedups. If, for example, it notes that a particular 
question is often met with an unanticipated response, or that it must be told exactly what to do in a given situation, 
the task knowledge may require correction. (Recognition of negative human emotion would also be a good indicator.) Such 
gradual development would support human expansion of the ontology. If the C I notes that some value is perfectly consistent 
over an extended period (e.g., H always eats at Jimmy’s) it may ask the person whether it may safely make that assumption. 
Such adaptations would supportively tailor its behavior without overstepping its bounds.

Although a core facet of collaboration is communication, this paper does not envision a general dialogue agent. Dialogue 
with a C I is intentionally formulaic and controlled. Within the communication it receives, a C I will detect only agree-
ment (e.g., “Sure”), disagreement (e.g., “nope”), questions (e.g., by intonation), and context-dependent instruction (e.g., “have 
lunch” will trigger a scheduling algorithm). Moreover, a C I’s replies will be instantiable but formulaic.

At every stage in its development, a C I requires evaluation by human subjects who are, after all, the ultimate authority 
on its success. Note that, in line 12, H’s C I contacts Alice’s C I to confirm and then notifies H that the task is complete. 
Although the scenario in Fig. 2 could have become a negotiation between two calendar agents, that is not how collaborative 
intelligence is envisioned here. Final decisions remain the purview of the people involved.

A C I is an active, not a passive, collaborator. Consider, for example, the differences between the proactive C I in Fig. 2
and its ancestor, the Calendar APprentice (CAP), which also scheduled appointments [19]. Offline, CAP learned thousands 
of user-customized, user-understandable rules from five years of data on each user. Each rule explained some feature of 
user-scheduled meetings (e.g., day of week or time of day) given others (e.g., participants). CAP was expected to combine 
and refine those rules over time, and to become increasingly autonomous, so that eventually it could schedule a meeting 
the way the user would. Without a computer–user dialogue, however, CAP’s scheduling often proved unsatisfactory. This 
is because a user’s motivation for a meeting to some extent drives that meeting’s features. Without sufficient knowledge, 
accurate generalizations cannot be formulated. CAP had no access to the user’s motivation and could not ask about it.

Although it is unreasonable to expect a C I to detect the subtleties that dictate how people make decisions, a C I that 
detected inconsistencies in observed patterns could certainly ask questions to improve its performance. For example, as 
electronic calendars become the norm, it is increasingly likely that requests for “personal” and “business” meetings will be 
directed to the same C I. If a user meets someone to plan a project one day and meets the same person to play tennis the 
next, a C I that asks for clarification (e.g., “isn’t Saturday an unusual meeting time?”) has the opportunity to learn a new 
feature value and new associations for it.

We are not far from much of Fig. 2. In response to a spoken query, my smartphone can tell me where I am, what I have 
scheduled for today and for next week, and what time my dinner appointment is tonight. When told “Make a reservation 
for me for dinner tomorrow,” it replied, “These restaurants have tables for two around 6 pm. Tap the one you’d like to 
reserve.” The same smartphone, however, made 15 restaurant suggestions when I asked it when I could have lunch today, 
and returned the same 15 when I asked if I was free for lunch today. (Presumably, it was more concerned about when the 
restaurants were open.) It can address times and locations, but it needs much more commonsense knowledge.

In summary, a C I requires procedures for knowledge elicitation, knowledge extraction, evidence combination, learning, 
and metareasoning, as well as a substantial knowledge base with an ontology. Such a knowledge base would admittedly be 
extensive, but its gradual development should generalize well at appropriate levels of granularity. Eventually, for example, 
the approach that created the appointments secretary could serve to arrange more complex meetings among more than two 
people. The next section proposes three reasonably approachable but difficult C I tasks.

4. Challenge problems

C I has the potential to make productive and welcome contributions in many human endeavors. The RoboCup@Home7

and RoboCup@Work8 challenges have highlighted the need for systems that collaborate with people, not replace them, to 
address the noise and uncertainty of the real world. A C I, however, does not require an embodied (i.e., robotic) presence. 
This section describes three C Is that would provide positive assistance to people: a virtual emergency room, a collaborative 
organizer, and a collaborative designer. Each of them requires the integration of sensory modalities and dialogue with 
reasoning and problem solving. Moreover, and most importantly, each of them would support a better outcome for the 
human user.

7 http :/ /www.robocupathome .org/, January 7, 2015.
8 http :/ /www.robocupatwork.org/, January 7, 2015.

http://www.robocupathome.org/
http://www.robocupatwork.org/
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4.1. The virtual emergency room

A virtual emergency room would provide remote first aid. Such a C I is intended to support people who lack the time, 
resources, or inclination to consult a medical professional. (As a side benefit, it could reduce the burden on healthcare 
systems.) This C I would have a sensing station that could detect, for example, whether the color, scent, and/or temperature 
of the skin surrounding a wound indicated a likely infection. It would be sensitive to emotion as expressed in the person’s 
voice and face. It would also address its knowledge about the individual: age, frequency of recourse to the C I, and medical 
history.

The virtual emergency room is not intended as a substitute medical professional, merely as a screener and information 
resource. It would address “Is there something I should do given this condition?” followed by “Is there something I can 
do myself?” It would be able to track data and offer advice over a period of time (e.g., monitor changes in a wound), 
ask diagnostic questions (e.g., “is there numbness?”), and present its rationale for a course of action (e.g., “Because of the 
color and pain, I think this is infected. Your alternatives are. . . ”). As it deemed necessary, the C I could contact a medical 
professional for guidance or even summon help.

Note that the C I would not make decisions for the person. Instead it would offer information from its knowledge base, 
given what it perceives. Initially, such a C I could be placed in convenient locations, or even in emergency rooms themselves, 
where it could take preliminary medical information from the prospective patient. Eventually, we might all have a virtual 
emergency room in our workplace, school, or home, to which we turned for quick, inexpensive advice. Success would 
be measured by the same standards to which we hold doctors and hospitals, including accuracy of diagnosis, cure rate, 
recurrence, and complications.

4.2. The collaborative organizer

A collaborative organizer would be a greatly enhanced version of the appointment secretary in Fig. 2. A collaborative 
organizer is intended to support arrangements that bring people together, for example, for a board meeting or a scien-
tific conference. It would solicit information from the person about the crucial features of a meeting (e.g., location, time, 
attendees).

This C I would work at multiple levels of granularity. First, it would identify the person’s priorities among what are 
likely to be multiple goals (e.g., conflicts, convenience, budget). As decisions are made, the C I could ask for further refine-
ments (e.g., from “in 2016” to “in summer, 2016” to “about a week after most European universities’ spring terms end”). It 
would remind the person about ancillary services (e.g., tech support, catering, photography). The C I would also have data 
on similar past meetings, including those arranged by the current user and by other users with their own C Is. It would 
understand concurrent events, ordering, and the inability of a person or an object to be in two places or serve two purposes 
simultaneously. Moreover, it would understand the need to revisit prior decisions that are impacted by current ones. For 
example, funds should be reallocated based on an overall budget; collocated, preliminary, and follow-on events must be 
addressed when dates or locations change. An interesting mathematical challenge here is appropriate pricing, which must 
address multiple, likely conflicting goals (e.g., attendance and profit). To help the person envision the meeting as it takes 
shape, the C I would provide a variety of templates, checklists, and interactive displays for budgets, schedules, assignments, 
and advertisements.

A collaborative organizer would accept instructions and offer suggestions but, once again, a person would guide the 
process and make the final decisions. Success would be measured by questionnaires that gauge the user’s satisfaction not 
only with respect to the task’s stated goals, but also with respect to the quality of the C I as a collaborator, including its 
communicative clarity and ease of use. This requires thoughtful empirical design, supported by insights from psychologists 
with expertise in how to elicit data from people.

4.3. The collaborative designer

A collaborative designer would be a greatly enhanced version of the soup assistant in Section 3. The construction of an 
object, be it a building, a park, or a bridge, effectively instantiates a template with values. Construction of a complex object 
requires raw material, a variety of processes, a partial-order planner, and the ability to address such diverse (and likely 
conflicting) evaluation criteria as safety, economy, and novelty. This C I would be expected to solicit feature values from the 
person (e.g., height, cost) and to have prior knowledge of fundamental processes for the object’s construction (e.g., permits, 
excavation, foundation). Together, the collaborative designer and the person would either evaluate the object after it is 
assembled or evaluate the design in simulation.

Rather than invent an entirely new object, this C I would likely present prototypes to the person, and accept and suggest 
changes to them (e.g., model a bridge after an existing one). This requires a large knowledge base of objects accessible 
through multiple indices (e.g., heavily-trafficked, short length, cable-stayed bridges) and the ability to examine three-
dimensional representations. Success would be measured by comparison of the finished product to its original specifications, 
and again by user satisfaction along multiple dimensions, including degree of responsiveness to specified goals and how easy 
the C I is to use.
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4.4. Discussion

Regardless of the task, a crucial evaluation metric for any collaborative intelligence, in my opinion, must be the extent 
to which a person believes that her work experience or product has been facilitated or improved by the collaboration. 
A successful C I will be welcome and used; it will be refined based on user requests and hypotheses it formulates for the 
person to confirm. It will be a model of shared understanding that allows two very different kinds of problem solvers to 
collaborate on interesting tasks.

The challenge problems above are increasingly difficult. A virtual emergency room is fundamentally a reactive, diagnos-
tic tool. It requires only relatively constrained dialogue, but introduces a variety of perceptive modalities, communication 
requirements, and a knowledge base that includes commonsense as well as historical and scientific knowledge. The collabo-
rative organizer introduces multiple goals and requires multiple skills at various levels of granularity. It also requires a more 
elaborate knowledge base of precedents, and must contend with constraints and prolonged interaction with the user over 
days or months of planning. The collaborative designer presents the greatest challenge. It requires a more nuanced repre-
sentation of time, a still larger knowledge base, multiple ways to represent the object to the user, and explicit specification 
of a broad range of evaluation criteria, including government regulations and aesthetic criteria.

The order of these three problems deliberately provides a developmental spectrum to support method transfer. Their 
dialogue requirements, user models, and knowledge requirements are increasingly more complex. Thus approaches from the 
simplest one, such as appropriate responses to emotion and detection of changed goals, will remain useful for subsequent 
C Is.

Each of these C Is has obvious simpler versions from which to begin. For the virtual emergency room, one might build 
an extensible set of medical cases and learn to classify them, beginning perhaps with an expert-labeled set of wound data, 
that include multiple images and heat maps of the same wound. For the collaborative organizer, one might begin with the 
appointment secretary in Fig. 2, and extend it to a meeting among more than two members of the same organization who 
require several support services. For the collaborative designer, one might begin with a simple artifact (e.g., a storage shed 
or a swimming pool) and then consider how the required processes and features can be generalized to identify the essential 
components of structural development.

Finally, at the core of collaboration is dialogue. The dialogue required of a C I, however, is not a full-blown system 
that purports to “understand.” To serve, a C I need only respond appropriately and ask constructive questions. The person’s 
intonation and facial expression should provide important guidance.

5. Conclusion

Although tales of human–computer collaboration are rampant in science fiction, few artifacts seek to combine the best 
talents of a person and a computer. There are at least two plausible reasons for this gap. First, it is easier not to include 
people in empirical work. Because people are non-uniform, costly, slow, error-prone, and sometimes irrational, properly 
designed empirical investigations with them are considerably more complex. Nonetheless, the ultimate judge of a C I’s 
success must be the person it is intended to assist. Second, the original vision for AI foresaw an autonomous machine. 
We have argued here, however, that a machine that shares a task with a person requires all the behaviors the Dartmouth 
proposal targeted, plus one more — the ability to collaborate on a common goal.

At this point in AI’s development, it is constructive to re-evaluate the significance of difficult tasks and human simulation. 
Just because an artifact can do something very difficult does not make it useful to people. Although it may be enjoyable to 
watch an AI program clash wits with a person, collaborative artifacts would be both considerably more useful and better 
able to attract societal support. Moreover, just because a computer can be engineered to do something as well as a person 
may not be a good enough reason to have the computer do it. A CoBot, for example, could be engineered to press elevator 
buttons, but it would then require arm-like appendages that might complicate its ability to maneuver past people and other 
CoBots in narrow passageways. Rather than re-design our world for computers or submit to their decisions, we should 
begin to share our tasks with them. Indeed, recent evidence suggests that access to technology like the Web and Wikipedia 
actually contributes positively to human decision making [27].

“We think,” read the Dartmouth manifesto, “that a significant advance can be made in one or more of these problems 
if a carefully selected group of scientists work on it together for a summer.” It will assuredly take us longer to produce 
C Is that respond in real time and learn to support human endeavors. AI has already spawned subfields that address key 
C I issues. Now C I offers us the opportunity to reunite these productive but isolated research communities. C I integrates 
multiple sensory modalities with what we know about intelligent software agents, human–computer interfaces, knowledge 
and evidence, learning, and metareasoning.

Successful C Is could establish a synergy between people and computers to accomplish human goals. Computers would 
do what they do best (or what people would prefer not to do at all), while people would reserve to themselves the ability 
to set priorities and to deal with the plethora of unforeseen situations that arise in a shared, dynamic world. A new focus on 
artificial intelligence that collaborates with people would incorporate and ultimately strengthen the advances AI has already 
made, improve AI’s public image, and provide AI researchers with a host of interesting and productive challenges.
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